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Abstract
We consider the partition function ZN of a random matrix model with
polynomial potential V (ξ) = t1ξ + t2ξ

2 + · · · + t2dξ
2d . It is known that the

second logarithmic derivative of ZN with respect to the times tk can be expressed
in terms of the recurrence coefficients of the related orthogonal polynomials. An
explicit formula for the recurrence coefficients of the orthogonal polynomials
in the limit N → ∞ for multi-cut regular V (ξ) has been derived in [10] through
the Riemann–Hilbert approach. The expression for ZN in the limit N → ∞
has been derived in [7] through a mean-field approach. We show that the above
asymptotic formulae satisfy the same relations that hold for finite N.

PACS number: 02.10.Yn

1. Introduction

We consider the partition function of a random matrix model,

ZN =
∫ ∞

−∞
. . .

∫ ∞

−∞

∏
1�j<k�N

(ξj − ξk)
2 exp


−N

N∑
j=1

V (ξj )


 dξ1 · · · dξN = N !

N−1∏
n=0

hn,

(1.1)

where V (ξ) is a polynomial,

V (ξ) =
2d∑

j=1

tj ξ
j , t2d > 0, (1.2)

and hn are the normalization constants of the orthogonal polynomials πn(ξ) on the line with
respect to the weight e−NV (ξ),∫ ∞

−∞
πn(ξ)πm(ξ) e−NV (ξ) dξ = hnδnm, πn(ξ) = ξn + · · · . (1.3)
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In this work we are interested in the asymptotic expansion of the partition function as N → ∞
in the so-called multi-gap case, namely when the support of the equilibrium measure ψ(ξ) dξ ,
which solves the variational problem,

F0 = Min
{ψ�0,∫ψdξ=1}

[
−

∫ +∞

−∞

∫ +∞

−∞
log|ξ − η|ψ(ξ)ψ(η) dξdη +

∫ +∞

−∞
V (ξ)ψ(ξ) dξ

]
, (1.4)

consists of many intervals. In the one-cut regular case

− 1

N2
log ZN ∝ F0 +

1

N2
F1 +

1

N4
F2 + · · · ,

that is, the logarithmic of the partition function has a regular asymptotic expansion in powers
of 1/N2 [3, 5, 14] and the terms F1, F2, . . . can be determined from F0 [16].

Define the orthonormal polynomials as pn(ξ) = 1√
hn

πn(ξ); then∫ ∞

−∞
pn(ξ)pm(ξ) e−NV (ξ) dξ = δnm. (1.5)

The polynomials pn(ξ) satisfy the three-term recurrence relation

zpn(ξ) = γn+1pn+1(ξ) + βnpn(ξ) + γnpn−1(ξ), γn =
√

hn

hn−1
. (1.6)

The recurrence coefficients evolve with respect to the times tk according to the
equations [1, 12, 15, 18]

1

N

∂ ln hn

∂tk
= −[Qk]nn, (1.7)

1

N

∂γn

∂tk
= γn

2
([Qk]n−1,n−1 − [Qk]nn), (1.8)

1

N

∂βn

∂tk
= γn[Qk]n,n−1 − γn+1[Qk]n+1,n, (1.9)

where [Qk]nm denotes the nm th element of the matrix Qk , and Q takes the form

Q =




β0 γ1 0 0 0 · · ·
γ1 β1 γ2 0 0 · · ·
0 γ2 β2 γ3 0 · · ·
0 0 γ3 β3 γ4 · · ·
0 0 0 γ4 β4 · · ·
...

...
...

...
...

. . .




. (1.10)

The following relations which connect the derivatives with respect to tk’s of the partition
functions ZN and the coefficients γN, βN and hN were derived in [5]:

1

N2

∂2 ln ZN

∂t2
1

= γ 2
N,

1

N2

∂2 ln ZN

∂t1∂t2
= γ 2

N(βN−1 + βN), (1.11)

1

N2

∂2 ln ZN

∂t2
2

= γ 2
N

(
γ 2

N−1 + γ 2
N+1 + β2

N + 2βNβN−1 + β2
N−1

)
. (1.12)

Similar formulae can be obtained for the derivatives with respect to higher times tk, k � 2.
The above formulae have been derived by Bleher and Its [5] for obtaining the full asymptotic
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Figure 1. The homology basis.

expansion of the partition function ZN in powers of 1/N2 in the one-cut regular case. The
same result has been proved earlier [14], using a different approach, to make the Bessis–
Itzykson–Zuber topological expansion rigorous [3].

The behaviour of the large N limit of the coefficients γN and βN−1 when the support of the
equilibrium measure consists of many intervals has been obtained by Deift et al [10] through
a Riemann–Hilbert approach. The asymptotic formulae can be described in the following
way. Let us assume that the support J of the equilibrium measure ψ(ξ) dξ consists of g + 1
intervals, namely J = ∪g

k=0(u2k+1, u2k+2), g � d − 1, and introduce the Riemann surface X of
genus g associated with the curve y2 = R(ξ) where R(ξ) = ∏2g+2

k=1 (ξ − uk). X is considered
as a double-sheeted covering of the complex plane. Introduce a basis of canonical cycles
{a1, . . . , ag, b1, . . . , bg}, as shown in figure 1, and the corresponding basis ω = (ω1, . . . , ωg)

of normalized holomorphic differentials∫
aj

ωi = δij , i, j = 1 . . . , g.

The corresponding period matrix B takes the form Bij = ∫
bj

ωi, i, j = 1, . . . , g, and the

θ -function is defined as θ(z) = ∑
n∈C

g exp(π i〈n, Bn〉 + 2π i〈z,n〉). Next, we introduce the
following vectors Ω = (�1,�2, . . . , �g):

�j = 2π

∫ u2g+2

u2j+1

ψ(ξ) dξ (1.13)

and

v+ =
∫ ∞1

u2g+2

ω, v =
∫ ∞1

∞2
ω = 2v+,

where ∞1,2 are the points at infinity on the first and second sheets of X, respectively. The
first sheet corresponds to the positive sign of

√
R(ξ) as ξ → ∞. With the above notation, the

behaviour of γN and βN−1 as N → ∞ is given by [10]

γ 2
N = (

γ 0
N

)2
+ O(1/N), βN−1 = β0

N−1 + O(1/N),

where1

(
γ 0

N

)2 =

1

4

g+1∑
j=1

(u2j − u2j−1)




2

θ(0)2

θ
(

N
2π

Ω
)2

θ
(
v + N

2π
Ω

)
θ
(
v − N

2π
Ω

)
θ(v)2

, (1.14)

1 We remark that formulae (1.14) and (1.15) look slightly different from those derived in [10] because we apply the
identity

d + v+ = 0,

where d is the vector introduced in (1.30) of [10].
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β0
N−1 =

g∑
k=1

∂zk
log

θ
(
v + N

2π
Ω

)
θ
(

N
2π

Ω
)
θ(v)

ωk(∞1), (1.15)

with zk the kth component of the argument of the θ -function, and ωk(∞1) := ωk(ξ)

ds

∣∣
s=0, s =

1/ξ . Equivalent formulae have been obtained in [7] by a mean-field approach. We remark
that the error term O(1/N) in (1.14) and (1.15) holds only in the regular case, but not in the
singular cases where the equilibrium measure vanishes at the interior point of J or to higher
order at the endpoints of J .

In this paper we show, at the algebraic level, that the asymptotic formulae (1.14) and
(1.15) satisfy

1

N2

∂2

∂t2
1

log

[
e−N2F0θ

(
NΩ
2π

)]
= γ 0

N + O(1/N), (1.16)

1

N2

∂2

∂t1∂t2
log

[
e−N2F0θ

(
NΩ
2π

)]
= (

γ 0
N

)2(
β0

N−1 + β0
N

)
+ O(1/N), (1.17)

1

N2

∂2

∂t2
2

log

[
e−N2F0θ

(
NΩ
2π

)]
= (

γ 0
N

)2((
γ 0

N−1

)2
+
(
γ 0

N+1

)2

+
(
β0

N

)2
+ 2β0

Nβ0
N−1 +

(
β0

N−1

)2)
+ O(1/N), (1.18)

where F0 and Ω have been defined in (1.4) and (1.13), respectively. Similar relations hold for
the derivatives with respect to the other parameters tk, 2 � k � 2d. The above identities are
in agreement with the derivation of the asymptotic behaviour of the partition function in the
large N limit obtained in [7] using a saddle point argument:

ZN 
 e−N2F0θ

(
NΩ
2π

)
.

A similar formula has been obtained in the context of the zero dispersion limit of the Korteweg
de Vries equation [24].

We remark that the derivatives of the free energy F0 with respect to the times tk have
been obtained in many papers and also in two-matrix models introducing the concept
of filling fractions, that is, fixing the density of the eigenvalues nk in each interval
(u2k−1, u2k), k = 1, . . . , g + 1, namely by adding to the variational problem (1.4) the term∑g+1

k=1 λk

∫ u2k

u2k−1
(ψ(ξ) dξ − nk) where λk are the Lagrange multipliers (see, e.g., [8, 2]). In this

paper, we follow a different approach evaluating the derivatives with respect to the times tk
directly on F0.

Despite the relations (1.14) and (1.15) being derived for a fixed external field V (ξ), we
assume that such a formula holds true while varying V (ξ) in a sufficiently small range. This
is to stress that relations (1.16)–(1.18) are formal identities and represent a first step towards
the rigorous mathematical derivation in the spirit of [5], of the expression of the partition
function ZN in the large N limit, when the support of the eigenvalues is distributed on many
intervals. The same result could possibly be obtained exploiting the relation between the
partition function ZN and the isomonodromic τ -function [1].

This paper is organized as follows. In the first section we present the necessary ingredients
to compute the derivatives on the lhs of (1.16)–(1.18) and in the second section we reduce
such derivatives to the terms on the rhs of (1.16)–(1.18).
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2. Times derivative of the equilibrium measure and F0

In this section we compute the derivatives with respect to tk’s of the equilibrium measure
ψ(ξ) dξ and of the planar limit F0 of the free energy.

The minimization problem (1.4) has been widely studied and it is reduced to the following
Euler–Lagrange equations:

Lψ(ξ) − V (ξ) = l where ψ > 0, (2.1)

Lψ(ξ) − V (ξ) � l where ψ = 0, (2.2)

where l is the Lagrange multiplier and

Lψ(ξ) =
∫ +∞

−∞
log|ξ − µ|ψ(µ) dµ. (2.3)

It can be shown [9] that ψ is the minimizer iff ψ is a non-negative function that satisfies the
variational conditions (2.1)–(2.2) and the constraint∫ +∞

−∞
ψ(ξ) dξ = 1. (2.4)

Assuming that the support J of the equilibrium measure consists of g + 1 intervals, namely
J = ∪g

k=0(u2k+1, u2k+2), the equilibrium measure takes the form

ψ(ξ) = 1

π i
�(ξ)

√
R(ξ)+ (2.5)

R(ξ) =
2g+2∏
k=1

(ξ − uk) (2.6)

�(ξ) = − 1

2π i

∮
V ′(s)√
R(s)

ds

s − ξ
, (2.7)

where
√

R(ξ)+ denotes the boundary value on J from the above and
√

R(ξ) behaves like ξg+1

as ξ → ∞. The contour integral in (2.7) is a closed clockwise loop around J ∪ ξ . The end
points of the support are determined from (2.4), the moment conditions

1

2π i

∮
V ′(s)sk

√
R(s)

ds = 0, k = 0, . . . , g, (2.8)

and the conditions∫ u2k

u2k+1

dξ�(ξ)
√

R(ξ) = 0, k = 1, . . . , g. (2.9)

The equilibrium measure is called regular (otherwise singular) [10] if �(ξ) �= 0 for ξ ∈ J̄ ,
where J̄ is the closure of J , and the inequality (2.2) is strict for ξ ∈ R\J . In the following, we
assume that the equilibrium measure is regular and we call the corresponding external field
V (ξ) regular. The variation of the equilibrium measure with respect to the end points of the
support has been obtained in [23] where it is shown that the regular behaviour of the equilibrium
measure is generic for a real analytic external field. In the following, we are interested in
obtaining the derivatives with respect to the times tk of the equilibrium measure ψ(ξ) and we
suppose that the variation of tk is sufficiently small so that the equilibrium measure remains
regular. For the purpose, we rewrite equations (2.8) and (2.9) as the zeros of a meromorphic
1-form on the Riemann surface X. This approach introduced by Krichever [22] is well known
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in the theory of Whitham equations. On the Riemann surface X of genus g, we introduce the
normalized meromorphic 1-forms σk(ξ) with a pole at the point ∞1 = (∞, +∞) of order
k + 1, k � 1, and the differential σ0(ξ) with first-order poles at the points ∞1,2 = (∞,±∞)

with residue ±1 respectively, namely

σk(ξ) = 1

2
ξk−1 dξ +

1

2

Pk(ξ)√
R(ξ)

dξ, k � 1

σ0(ξ) = P0(ξ)√
R(ξ)

dξ,

where Pk(ξ) = ξg+k + ag,1ξ
g+k−1 + · · · + ag,g+k and its coefficients are uniquely determined by

Pk(ξ)√
R(ξ)

= ξk−1 + O

(
1

ξ 2

)
for large |ξ |, (2.10)

and ∫
aj

σk(ξ) = 0, j = 1, 2, . . . , g. (2.11)

Let us introduce the differential

�(ξ) =
d∑

k=1

ktkσk(ξ) − σ0(ξ). (2.12)

The following identity holds.

Theorem 2.1. Equations (2.8) and (2.9) are equivalent to the equations

�(ξ)

dη

∣∣∣∣
η=0

= 0, η =
√

ξ − uk, k = 1 . . . , 2g + 2, (2.13)

where the differential �(ξ) has been defined in (2.12).

Proof. The proof is similar to that of the KdV case [19, 20]. The differential � can be written
in the form

�(ξ) = 1

2
V ′(ξ) +

√
R(ξ)�(ξ) dξ +

Q(ξ)√
R(ξ)

dξ, (2.14)

where �(ξ) has been defined in (2.7) and

Q(ξ) =
2g+2∑
i=1


 2g+2∏

l=1,l �=i

(ξ − ul)


 ∂ui

qg(u) − P0(ξ) +
g∑

k=1

Pk(ξ)k

g−k∑
l=0

�l(u)qk+l(u), (2.15)

where �l(u)’s come from the expansion√
R(µ) = µg+1

[
�0(u) +

�1(u)

µ
+

�2(u)

µ2
+ · · ·

]
. (2.16)

The function qk is

qk(u) = i

2π

∫
J

V (µ)µg−k

R(µ)
dµ, k = 1, . . . , g. (2.17)

Equations (2.13) and (2.14) imply that the polynomial Q(ξ) is identically zero, namely

Q(ξ) ≡ 0.

Indeed, the first two terms in (2.14) are automatically zero at the points ui, i = 1, . . . , 2g + 2.
So it follows that the polynomial Q(ξ) of degree 2g + 1 must have 2g + 2 zeros. Therefore, it
is identically zero. Putting equal to zero the coefficients of Q(ξ) from degree 2g + 1 to degree
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g + 1 is equivalent to equation (2.8). To show that equations (2.13) imply (2.9), it is sufficient
to observe that on the solution of (2.13) the conditions∫

ai

�(ξ) = 0, i = 1, . . . , g,

take the form (2.9). �

On the solution of (2.13), because of (2.14), the equilibrium measure can be written in the
form

ψ(ξ) dξ = Re

(
�(ξ)

π i

)
, (2.18)

where Re is the real part of the differential �(ξ). Here and in the rest of the paper, we assume
that

√
R(ξ) appearing in the Abelian differentials coincides with

√
R(ξ)+ for ξ ∈ R. From

(2.18), it is clear that∫
J

ψ(ξ) dξ =
∫

J

Re

(
�(ξ)

π i

)
= 1,

because the differentials σk, k � 1, have zero residue at ∞+, and σ0 has residue equal to 1.
The above formulation enables one to evaluate the derivatives with respect to the times tk of
the equilibrium measure and of the integrals �j in a straightforward way using the approach
of Krichever [22].

Proposition 2.2. The following relations hold:

∂

∂tk
ψ(ξ) dξ = k Re

(
σk(ξ)

π i

)
, k � 1, (2.19)

∂

∂tk
�j = −2π Res

ξ=∞
(ξ kωj (ξ)), j = 1, . . . , g. (2.20)

Proof. We observe that

∂

∂tk
�(ξ) = kσk(ξ) +


 d∑

j=1

j tj
∂

∂tk
σj (ξ) − ∂

∂tk
σ0(ξ)


 .

The expression in brackets is a normalized Abelian differential which does not have a pole at
infinity because the principal part of the differentials σj , j � 0, is independent of tk’s, and it
does not have a pole at uj , j = 1, . . . , 2g + 2, in view of (2.13). Hence, the differential in
the bracket is a holomorphic differential with all the a-periods equal to zero and therefore it is
identically zero, so

∂

∂tk
�(ξ) = kσk(ξ). (2.21)

Relation (2.19) follows from the above relation and (2.18). To prove (2.20), it is sufficient to
observe that, by (2.18)

�j = 2π

∫ u2g+2

u2j+1

ψ(ξ) dξ = 2π − Im
∫

bj

�(ξ),

where Im is the imaginary part, by (2.21) and by the Riemann bilinear relations

∂

∂tk
�j = −k Im

∫
bj

σk(ξ) = 2π Res
ξ=∞

(ξ kωj (ξ)).

�
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From (2.19) the derivative of F0 with respect to the times tk can be evaluated in a straightforward
way.

Proposition 2.3. The following relations hold:

∂2F0

∂tk∂tj
= j

π i

∫
J

ξ kσj (ξ) = k

π i

∫
J

ξ jσk(ξ), k, j � 1. (2.22)

Proof. From (2.19), we obtain

∂tkF0 = −2k

π i

∫
J

∫
J

log|ξ − η|σk(ξ)ψ(η) dη +
k

π i

∫
J

V (ξ)σk(ξ) +
∫

J

ξ kψ(ξ) dξ

= lk

π i

∫
J

σk(ξ) +
∫

J

ξ kψ(ξ) dξ,

where l is the Lagrange multiplier. Next, performing the tj derivative and observing that∫
J

σk(ξ) = 0 and ∂tj

∫
J

σk(ξ) = 0, we obtain

∂2F0

∂tk∂tj
= j

π i

∫
J

ξ kσj (ξ). (2.23)

The identity j
∫
J

ξ kσj (ξ) = k
∫
J

ξ jσk(ξ) follows from the symmetry of F0 with respect to the
times derivatives. �

In the following, we aim at writing relation (2.22) in a clear symmetric form using the so-called
canonical symmetric 2-differential B(P,Q), P,Q,∈ X. B(P,Q) is the canonical symmetric
2-form which is uniquely determined by the following conditions:

• B(P,Q) is symmetric in its arguments;
• all the a-periods of B(P,Q) with respect to any of its two variables vanish. The period

with respect to the variable P or Q, along the bk cycle, is equal to 2π iωk(Q) or 2π iωk(P ),
respectively;

• B(P,Q) has a double pole along the diagonal with the following local behaviour:

B(P,Q) =
(

1

(x(P ) − x(Q))2
+ O(1)

)
dx(P ) dx(Q), (2.24)

where x is a local coordinate.

The Abelian differential σk satisfies the relation

σk(Q) = −1

k
Res

P=∞1
(ηkB(P,Q)), P = (η,w) ∈ X, (2.25)

where ∞1 = (∞, +∞),Q = (ξ, y) ∈ X. So the identity on the rhs of (2.22) corresponds to∫
J

ξ j Res
P=∞1

(ηkB(P,Q)) =
∫

J

ξ k Res
P=∞1

(ηjB(P,Q)).

Therefore, by (2.25), relation (2.22) can be written in the form

∂2F0

∂tk∂tj
= − Res

Q=∞1
Res

P=∞1
(ηkξ jB(P,Q)), P = (η,w) ∈ X, Q = (ξ, y) ∈ X. (2.26)

We would like to stress that relation (2.22) is well known in the theory of Hermitian one-matrix
models with a filling fraction. The derivation of the same formulae in this context has to follow
a different approach.

Combining propositions (2.2) and (2.26), we arrive at the following result.
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Theorem 2.4. The following relations are satisfied:

1

N2

∂2

∂tk∂tj
log

[
e−N2F0θ

(
NΩ
2π

)]
= Res

P=∞1
Res

Q=∞1

(
ξ jηk

[
B(P,Q) +

g∑
n,m=1

∂2

∂zn∂zm

log θ

×
(

NΩ
2π

)
ωm(P )ωn(Q)

])
+ O

(
1

N

)
, (2.27)

where P = (ξ, y) ∈ X and Q = (η,w) ∈ X.

The above theorem is the first step towards the proof of identities (1.16)–(1.18).

3. Formal identities for the asymptotic of the recurrence coefficients

Let us recall the basic steps of the Riemann–Hilbert approach to the asymptotic analysis of
the orthogonal polynomial following the scheme of [10]. The principal observation [18] is
that the orthogonal polynomials Pn(ξ) admit the representation

Pn(ξ) = Y11(ξ, n), (3.1)

where the 2 × 2 matrix function Y (ξ, n) is the (unique) solution of the following Riemann–
Hilbert problem (RHP).

(1) Y (ξ, n) is analytic for ξ ∈ C\R, and it has continuous limits, Y+(ξ, n) and Y−(ξ, n), from
above and below the real line, respectively,

Yn±(ξ) = lim
ξ ′→ξ,±Imξ ′>0

Y (ξ ′, n).

(2) Y (ξ, n) satisfies the jump condition on the real line,

Y+(ξ, n) = Y−(ξ, n)

(
1 e−NV (ξ)

0 1.

)
. (3.2)

(3) As ξ → ∞, the function Y (ξ, n) has the following uniform asymptotic expansion:

Y (ξ, n) ∼
(

I +
∞∑

k=1

Yk(n)

ξk

)
ξnσ3 , ξ → ∞, (3.3)

where

σ3 =
(

1 0
0 −1

)
.

In addition to equation (3.1), the recurrence coefficients γn and βn−1 can also be evaluated
directly via Y (ξ, n) by the formulae

γ 2
n = (Y1(n))21(Y1(n))12, (3.4)

βn−1 = (Y2(n))21

(Y1(n))21
− (Y1(n))11, (3.5)

where the matrices Y1(n) and Y2(n) are the first and second coefficients of the asymptotic
series (3.3) and Ys(n)kj denotes the k, j entry of the matrix Ys(n). Equations (3.4) and
(3.5) reduce the problem of determining the asymptotic of the recurrence coefficients when
n = N,N → ∞ to the problem of the asymptotic solution of the RHP (1)–(3). In the case of
a fixed external field V (ξ), this analysis is performed in [10]. The approach in [10] consists
of a succession of steps which, in the end, yields a reduced RHP for a matrix M(ξ) and the
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behaviour of the coefficients γN and βN−1 as N → ∞ can be recovered from M(ξ). The
following results can be found in [10].

Theorem 3.1. The coefficients γN and βN−1 behave as N → ∞
γN = γ 0

N + O(1/N), βN−1 = β0
N−1 + O(1/N),

where

(
γ 0

N

)2 = (M1)12(M1)21, (3.6)

β0
N−1 = (M2)21

(M1)21
− (M1)11, (3.7)

and M1 and M2 are 2 × 2 matrices which are recovered from the unique solution M(ξ) of the
following 2 × 2 matrix RHP:

M+(ξ) = M−(ξ)ν(ξ), ξ ∈ R, (3.8)

M(ξ) = I +
∞∑

k=1

Mk

ξk
, ξ → ∞, (3.9)

and the matrix ν(ξ) is defined as

ν(ξ) =
(

e−iN�j 0
0 eiN�j

)
, ξ ∈ (u2j , u2j+1), j = 1, . . . , g, (3.10)

ν(ξ) = I, ξ ∈ (−∞, u1) ∪ (u2g+2,∞), (3.11)

ν(ξ) =
(

0 1
−1 0

)
, ξ ∈ g∪

j=1
(u2k−1 − u2k). (3.12)

We remark that theorem 3.1 holds true in the regular case, but not in singular cases where the
equilibrium measure vanishes at the interior points of the spectrum or to higher order at the
end points of the spectrum.

The solution of the RHP (3.8)–(3.9) derived in [10] can be rewritten in terms of the Szegö
kernel of the surface X in the following way [13, 21].

On a Riemann surface C, the Szegö kernel S
[
δ
ε

]
(Q, P ) is defined for all non-singular

characteristics
[
δ
ε

]
as the

(
1
2 , 1

2

)
-form on C × C which has only a pole on the diagonal [17],

namely as P → Q

S

[
δ

ε

]
(Q, P ) =

√
dx(P )

√
dx(Q)

x(P ) − x(Q)
[1 + O((x(P ) − x(Q))] , (3.13)

where x is a local coordinate. The Szegö kernel transforms when the variable P goes around
ak- and bk-cycles as follows:

S

[
δ

ε

]
(Q, P + ak) = ε2π iδk S

[
δ

ε

]
(Q, p), (3.14)

S

[
δ

ε

]
(Q, P + bk) = ε−2π iεk S

[
δ

ε

]
(Q, P ), k = 1, . . . , g. (3.15)
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The Szegö kernel of the hyperelliptic curve X can be written in the form [17]

S

[
δ

ε

]
(P0, P ) = 1

2

(
γ (ξ(P ))

γ (ξ(P0)
+

γ (ξ(P0))

γ (ξ(P ))

)
θ
[ δ

ε

]( ∫ P

P0
ω;�

)
θ
( ∫ P

P0
ω
) θ(0)

θ
[

δ
ε

]
(0)

√
dξ(P ) dξ(P0)

ξ(P ) − ξ(P0)
,

(3.16)

where by ξ(P ) we still denote the projection map P = (ξ, y) → ξ from X to C∞,

γ (ξ) = 4

√√√√ ∏g+1
k=1(ξ − u2k)∏g+1

k=1(xi − u2k−1)
,

and θ
[
δ
ε

]
(z) is the θ -function with the characteristics defined via

θ
[
δ
ε

]
(z) =

∑
n∈Z

g

exp(π i〈Bn + Bδ,n + δ〉 + 2π i〈z + β,n + δ〉). (3.17)

For P = (ξ, y), P0 = (ξ0, y0), we define the quantity Ŝ(P , P0) as

Ŝ

[
δ

ε

]
(P0, P ) = S

[
δ

ε

]
(P0, P )

ξ − ξ0√
dξ dξ0

.

Then the solution of the matrix RHP (3.8)–(3.9) takes the form

M(ξ) =

Ŝ

[ 0
N
2π

Ω

]
(∞1, P 1, ) Ŝ

[ 0
N
2π

Ω

]
(∞1, P 2)

Ŝ
[ 0

N
2π

Ω

]
(∞2, P 1) Ŝ

[ 0
N
2π

Ω

]
(∞2, P 2)


 , (3.18)

where P 1,2 = (ξ,±y) are conjugate points on the Riemann surface X and ∞1,2 = (∞,±∞).
We remark that the path of integration between the points on different sheets of the Riemann
surface X like ∫ P 2

∞1
ω

is taken from ∞1 to u2g+2 on the first sheet and from u2g+2 to P 2 on the second sheet. The
entries of the matrix M do not have poles. Indeed, let us consider M11,

Ŝ

[
0

N
2π

Ω

]
(∞1, P 1) = 1

2

(
γ (ξ(P 1)) +

1

γ (ξ(P 1))

)
θ
( ∫ P 1

∞1 ω + N
2π

Ω
)

θ
( ∫ P 1

∞1 ω
) θ(0)

θ
(

N
2π

Ω
) . (3.19)

The properties of the Szegö kernel guarantee that the g-zeros of θ
( ∫ P 1

∞1 ω
)

in the denominator
of the above expression are cancelled by the g-zeros of the term γ (ξ(P 1)) + 1

γ (ξ(P 1))
, so

the whole expression in (3.19) does not have poles but only singularities at uk’s of the type
1/ 4

√
ξ − uk . The same considerations can be done for the other entries of the matrix M. To

verify (3.9), we observe that

γ (ξ(P 1)) =
√∏g+1

k=1(ξ − u2k−1)

y
, P 1 = (ξ, y),

so that γ (ξ(P 2)) = −iγ (ξ(P 1)) and γ (∞1) = 1. It then follows that

Ŝ

[
0

N
2π

Ω

]
(∞1,∞1) = Ŝ

[
0

N
2π

Ω

]
(∞2,∞2) = 1, or M11(∞) = M22(∞) = 1

and

Ŝ

[
0

N
2π

Ω

]
(∞2,∞1) = Ŝ

[
0

N
2π

Ω

]
(∞1,∞2) = 0, or M12(∞) = M21(∞) = 0.
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The regular expansion of M in powers of 1/ξ as ξ → ∞ follows from the fact that the point
at infinity is a regular point of the Riemann surface X. To show that (3.8) is satisfied, let us
denote by ∫ P

Q

ω±, ξ(P ), ξ(Q) ∈ R,

the integrals on C±, namely the upper and lower part of the complex plane with respect to the
real axis.

Then the following relations hold for P 1,2 = (ξ,±√
R(ξ)):(∫ P 1

∞1,2
ω+ −

∫ P 2

∞1,2
ω−

)∣∣∣∣∣
ξ∈(u2k−1,u2k)

= −
g∑

j=k

∫
aj

ω, k = 1, . . . , g, (3.20)

(∫ P 1

∞1,2
ω+ −

∫ P 2

∞1,2
ω−

)∣∣∣∣∣
ξ∈(u2g+1,u2g+2)

= 0, (3.21)

(∫ P 1

∞1,2
ω+ −

∫ P 1

∞1,2
ω−

)∣∣∣∣∣
ξ∈(u2k ,u2k+1)

=
∫

βk

ω, k = 1, . . . , g, (3.22)

(∫ P 1

∞1,2
ω+ −

∫ P 1

∞1,2
ω−

)∣∣∣∣∣
ξ∈(−∞,u1)

= 0, (3.23)

where ∞1,2 stands for ∞1 or ∞2. Similar obvious relations hold when the end point of the
integration in (3.22) and (3.23) is P 2. Regarding the behaviour of the function γ , we have that

γ (ξ(P 1))+ = iγ (ξ(P 1))−, ξ(P 1) ∈ J. (3.24)

Combining (3.20)–(3.24) and the periodicity properties (3.14)–(3.15) of the Szegö kernel, it
is straightforward to verify that expression (3.18) satisfies condition (3.8).

The entries of the matrix M1, that is, the first term of the expansion of M(ξ) as ξ → ∞
are

(M1)sr = Ŝ

[
0

N
2π

Ω

]
(∞r ,∞s) = i(−1)s

4

g+1∑
k=1

(u2k − u2k−1)
θ
[ 0

N
2π

Ω

]( ∫ ∞r

∞s ω
)

θ
( ∫ ∞r

∞s ω
) θ(0)

θ
[ 0

N
2π

Ω

]
(0)

,

(3.25)

for s = 1, r = 2 or r = 1, s = 2 and

(M1)11 =
g∑

k=1

∂zk
log θ

(
N

2π
Ω

)
ωk(∞1). (3.26)

The entry 21 of the matrix M2, that is, the second term of the expansion of M(ξ) as ξ → ∞
takes the form

(M2)21 = i

4

g+1∑
k=1

(u2k − u2k−1)
θ(0)

θ
(

N
2π

Ω
) g∑

k=1

∂

∂zk

(
θ
(
v + N

2π
Ω

)
θ (v)

)
ωk(∞1), (3.27)

where

v :=
∫ ∞1

∞2
ω.
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From (3.6)–(3.7) and (3.25)–(3.27), expressions (1.14) and (1.15) for γ 0
N and β0

N can be
obtained in a straightforward way, respectively.

In order to verify relations (1.16)–(1.18) the following Fay’s identity [17] which relates
the Szegö kernel and the canonical symmetric 2-differential is fundamental:

−S

[
δ

ε

]
(P,Q)S

[
δ

ε

]
(Q, P ) = B(P,Q) +

g∑
k=1

∂2

∂zi∂zj

log θ

[
δ

ε

]
(0)ωi(P )ωj (Q). (3.28)

Proposition 3.2. The coefficient γ 0
N defined in (1.14) satisfies the relation

1

N2

∂2

∂t2
1

log

[
e−N2F0θ

(
NΩ
2π

)]
= (

γ 0
N

)2
+ O(1/N). (3.29)

Proof. To prove the proposition, it is sufficient to multiply Fay’s identity (3.28) by ξ and η

and take the residue at P = ∞1 and Q = ∞2. The lhs gives

− Res
P=∞1

Res
Q=∞2

(
ξηS

[
0

N
2π

Ω

]
(P,Q)S

[
0

N
2π

Ω

]
(Q, P )

)
= −(

γ 0
N

)2
,

P = (ξ, y) ∈ X, Q = (η,w) ∈ X,

because of (1.14) and (3.25) and the rhs gives

Res
P=∞1

Res
Q=∞2

(
ξη

[
B(P,Q) +

g∑
n,m=1

∂2

∂zn∂zm

log θ

(
NΩ
2π

)
ωm(P )ωn(Q)

])
+ O

(
1

N

)

= − 1

N2

∂2

∂t2
1

log

[
e−N2F0θ

(
NΩ
2π

)]
,

because of (2.27). �

To prove relation (1.17), we rewrite (1.11) in the form

1

N2

∂2 ln ZN

∂t1∂t2
= γ 2

N(βN−1 + βN) = γ 2
N

(
2βN−1 − 1

N

∂ log γ 2
N

∂t1

)
,

where we have used the following relation in the last identity:

1

N

∂ log γ 2
n

∂t1
= (βn−1 − βn) , (3.30)

which follows from (1.8). Despite the formulae for γ 0
N and β0

N1
being proved only for the fixed

external field V (ξ), we assume that they hold true while varying V (ξ) in a sufficiently small
range.

Proposition 3.3. The following relation is satisfied:

1

N2

∂2

∂t1∂t2
log

[
e−N2F0θ

(
NΩ
2π

)]
= (

γ 0
N

)2(
β0

N−1 + β0
N

)
+ O(1/N). (3.31)

Proof. Using expressions (1.14) and (1.15), we obtain

(
γ 0

N

)2

(
2β0

N−1 − 1

N

∂ log
(
γ 0

N

)2

∂v1

)
= 1

16

(
g+1∑
k=1

(u2k − u2k−1)

)2
θ(0)2

θ
(

N
2π

Ω
)2

×

θ

(−v + N
2π

Ω
)

θ (−v)

g∑
j=1

∂

∂zj

θ
(
v + N

2π
Ω

)
θ(v)

ωj (∞1)
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− θ
(
v + N

2π
Ω

)
θ (v)

g∑
j=1

∂

∂zj

θ
(−v + N

2π
Ω

)
θ(−v)

ωj (∞1)


 + O(1/N)

= Res
P=∞1

Res
Q=∞2

(
ξη2S

[
0

N
2π

Ω

]
(P,Q)S

[
0

N
2π

Ω

]
(Q, P )

)
,

P = (ξ, y) ∈ X, Q = (η,w) ∈ X. (3.32)

A comparison of (2.27), when Q = ∞1 is replaced by Q = ∞2, (3.28) and (3.32) gives the
statement. �

Finally, we prove the last relation (1.18).

Proposition 3.4. The following relation is satisfied:

1

N2

∂2

∂t2
2

log

[
e−N2F0θ

(
NΩ
2π

)]
= (

γ 0
N

)2((
γ 0

N−1

)2
+
(
γ 0

N+1

)2

+
(
β0

N

)2
+ 2β0

Nβ0
N−1 +

(
β0

N−1

)2)
+ O(1/N). (3.33)

Proof. Using relations (3.30) and

∂

∂t1
βN = γ 2

N − γ 2
N+1, (3.34)

which can be recovered from (1.9), we rewrite the lhs of (1.12) in the form

1

N2

∂2 ln ZN

∂t2
2

= γ 2
N

[
1

N2

∂2 log γ 2
N

∂t2
1

+ 2γ 2
N +

(
2βN−1 − 1

N

∂ log γ 2
N

∂v1

)2
]

. (3.35)

Then, inserting the leading terms γ 0
N and β0

N−1 defined in (1.14) and (1.15) into the above
relation and dropping terms of order O(1/N) or higher, we arrive at the expression

(
γ 0

N

)2


 1

N2

∂2 log
(
γ 0

N

)2

∂t2
1

+ 2
(
γ 0

N

)2
+

(
2β0

N−1 − 1

N

∂ log
(
γ 0

N

)2

∂v1

)2

 + O(1/N)

= Res
P=∞1

Res
Q=∞2

(
ξ 2η2S

[
0

N
2π

Ω

]
(P,Q)S

[
0

N
2π

Ω

]
(Q, P )

)
,

P = (ξ, y) ∈ X, Q = (η,w) ∈ X,

which by (3.28) and (2.27) proves the statement. �
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